太好了,在本地科研 + PyCharm 开发环境中,推荐你使用 Prefect 2.x 来管理中文专利 LDA 的数据流程。它轻量、Python 原生、易调试,非常适合你的场景。 ⸻ ✅ Prefect 本地科研使用方案(适合 PyCharm) 📦 一、安装 Prefect pip install prefect ⸻ 🧱 二、项目目录结构推荐 lda_pipeline/ ├── pipeline.py # Prefect 工作流定义 ├── data/ │ ├── raw/ # 原始专利摘要 │ └── processed/ # 分词/清洗结果 ├── modules/ │ ├── fetch.py # 数据获取模块 │ ├── preprocess.py # 清洗 + 分词模块 │ ├── lda_model.py # LDA 训练与保存 │ └── visualize.py # 可视化模块 └── config/ └── stopwords.txt ⸻ 🚀 三、工作流定义示例(pipeline.py) from prefect import flow, task from modules import fetch, preprocess, lda_model, visualize @task def load_data(): return fetch.load_raw_data("data/raw/patents.json") @task def clean_and_tokenize(texts): return preprocess.clean_and_segment(texts, stopword_path="config/stopwords.txt") @task def train_lda_model(tokenized_texts): return lda_model.train(tokenized_texts, num_topics=10) @task def show_topics(model): visualize.show_wordclouds(model) @flow def lda_pipeline(): data = load_data() tokens = clean_and_tokenize(data) lda_model_obj = train_lda_model(tokens) show_topics(lda_model_obj) if __name__ == "__main__": lda_pipeline() 运行这个脚本后,你的整个 LDA 流程就会按任务顺序自动执行,每个阶段都可单独调试。 ⸻ 📚 四、每个模块建议内容 modules/fetch.py import json def load_raw_data(path): with open(path, 'r', encoding='utf-8') as f: return [entry["abstract"] for entry in json.load(f)] modules/preprocess.py import jieba def clean_and_segment(texts, stopword_path): stopwords = set(open(stopword_path, encoding='utf-8').read().splitlines()) result = [] for text in texts: words = jieba.lcut(text) filtered = [w for w in words if w not in stopwords and len(w) > 1] result.append(filtered) return result modules/lda_model.py from gensim import corpora, models def train(texts, num_topics=10): dictionary = corpora.Dictionary(texts) corpus = [dictionary.doc2bow(text) for text in texts] lda_model = models.LdaModel(corpus, num_topics=num_topics, id2word=dictionary, passes=10) return lda_model modules/visualize.py from wordcloud import WordCloud import matplotlib.pyplot as plt def show_wordclouds(model): for i in range(model.num_topics): words = dict(model.show_topic(i, topn=30)) wc = WordCloud(font_path='SimHei.ttf', width=800, height=400).generate_from_frequencies(words) plt.imshow(wc, interpolation='bilinear') plt.title(f"Topic {i}") plt.axis("off") plt.show() ⸻ 🧪 五、调试技巧(PyCharm) • 在每个 @task 函数中加日志 print() 或断点调试。 • Prefect 是 Python 原生函数执行,支持逐行调试,体验非常适合科研场景。 • 你也可以在 PyCharm 的 terminal 中运行: python pipeline.py ⸻ 如果你需要,我可以帮你生成完整的项目模板压缩包或为你提供一个 Git 项目结构。要我给你打一个 zip 包或者脚手架初始化脚本吗?