太好了,在本地科研 + PyCharm 开发环境中,推荐你使用 Prefect 2.x 来管理中文专利 LDA 的数据流程。它轻量、Python 原生、易调试,非常适合你的场景。
⸻
✅ Prefect 本地科研使用方案(适合 PyCharm)
📦 一、安装 Prefect
pip install prefect
⸻
🧱 二、项目目录结构推荐
lda_pipeline/ ├── pipeline.py # Prefect 工作流定义 ├── data/ │ ├── raw/ # 原始专利摘要 │ └── processed/ # 分词/清洗结果 ├── modules/ │ ├── fetch.py # 数据获取模块 │ ├── preprocess.py # 清洗 + 分词模块 │ ├── lda_model.py # LDA 训练与保存 │ └── visualize.py # 可视化模块 └── config/
└── stopwords.txt
⸻
🚀 三、工作流定义示例(pipeline.py)
from prefect import flow, task from modules import fetch, preprocess, lda_model, visualize
@task def load_data():
return fetch.load_raw_data("data/raw/patents.json")
@task def clean_and_tokenize(texts):
return preprocess.clean_and_segment(texts, stopword_path="config/stopwords.txt")
@task def train_lda_model(tokenized_texts):
return lda_model.train(tokenized_texts, num_topics=10)
@task def show_topics(model):
visualize.show_wordclouds(model)
@flow def lda_pipeline():
data = load_data()
tokens = clean_and_tokenize(data)
lda_model_obj = train_lda_model(tokens)
show_topics(lda_model_obj)
if name == "main":
lda_pipeline()
运行这个脚本后,你的整个 LDA 流程就会按任务顺序自动执行,每个阶段都可单独调试。
⸻
📚 四、每个模块建议内容
modules/fetch.py
import json
def load_raw_data(path):
with open(path, 'r', encoding='utf-8') as f:
return [entry["abstract"] for entry in json.load(f)]
modules/preprocess.py
import jieba
def clean_and_segment(texts, stopword_path):
stopwords = set(open(stopword_path, encoding='utf-8').read().splitlines())
result = []
for text in texts:
words = jieba.lcut(text)
filtered = [w for w in words if w not in stopwords and len(w) > 1]
result.append(filtered)
return result
modules/lda_model.py
from gensim import corpora, models
def train(texts, num_topics=10):
dictionary = corpora.Dictionary(texts)
corpus = [dictionary.doc2bow(text) for text in texts]
lda_model = models.LdaModel(corpus, num_topics=num_topics, id2word=dictionary, passes=10)
return lda_model
modules/visualize.py
from wordcloud import WordCloud import matplotlib.pyplot as plt
def show_wordclouds(model):
for i in range(model.num_topics):
words = dict(model.show_topic(i, topn=30))
wc = WordCloud(font_path='SimHei.ttf', width=800, height=400).generate_from_frequencies(words)
plt.imshow(wc, interpolation='bilinear')
plt.title(f"Topic {i}")
plt.axis("off")
plt.show()
⸻
🧪 五、调试技巧(PyCharm)
• 在每个 @task 函数中加日志 print() 或断点调试。
• Prefect 是 Python 原生函数执行,支持逐行调试,体验非常适合科研场景。
• 你也可以在 PyCharm 的 terminal 中运行:
python pipeline.py
⸻
如果你需要,我可以帮你生成完整的项目模板压缩包或为你提供一个 Git 项目结构。要我给你打一个 zip 包或者脚手架初始化脚本吗?